Abstract

Mechanisms for fatigue crack closure under plane strain conditions have recently been identified at very low (near-threshold) stress intensities in terms of effects of excess corrosion deposits or fracture surface roughness in promoting premature closure of the crack. In the present paper, a geometric model is presented for crack closure induced by fracture surface roughness. This model specifically addresses the contribution from both Mode I and Mode II crack tip displacements in addition to considering the nature of the fracture surface morphology. The implications of this model are briefly discussed in light of the roles of grain size, yield strength, microstructure, and crack size in influencing near-threshold fatigue behavior in engineering alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.