Abstract

We study the coarsening observed in spiral-mode growth of thin films. The high-temperature superconductor YBa 2 Cu 3 O 7−δ provides a suitable model system. The density of spirals at the surface decreases as the film gets thicker. In other words, the grain size coarsens with distance from the substrate. We propose a simple mechanism for this coarsening, based on geometrical competition of spirals with different vertical growth rates. The consequences of this mechanism are developed both analytically and numerically in the limit where adatom attachment is controlled by surface diffusion. In particular, we show how the time-evolution of spiral density, film thickness, and surface roughness depend on the spiral growth rate statistics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.