Abstract

Diffusion tensor magnetic resonance imaging (DT-MRI, shortened as DTI) produces, from a set of diffusion-weighted magnetic resonance images, tensor-valued images where each voxel is assigned a 3x3 symmetric, positive-definite matrix. This tensor is simply the covariance matrix of a local Gaussian process with zero mean, modelling the average motion of water molecules. We propose a three-dimensional geometric flow-based model to segment the main core of cerebral white matter fibre tracts from DTI. The segmentation is carried out with a front propagation algorithm. The front is a three-dimensional surface that evolves along its normal direction with speed that is proportional to a linear combination of two measures: a similarity measure and a consistency measure. The similarity measure computes the similarity of the diffusion tensors at a voxel and its neighbouring voxels along the normal to the front; the consistency measure is able to speed up the propagation at locations where the evolving front is more consistent with the diffusion tensor field, to remove noise effect to some extent, and thus to improve results. We validate the proposed model and compare it with some other methods using synthetic and human brain DTI data; experimental results indicate that the proposed model improves the accuracy and efficiency in segmentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.