Abstract

Let G be a connected reductive linear algebraic group. We use geometric methods to investigate G-completely reducible subgroups of G, giving new criteria for G-complete reducibility. We show that a subgroup of G is G-completely reducible if and only if it is strongly reductive in G; this allows us to use ideas of R.W. Richardson and Hilbert--Mumford--Kempf from geometric invariant theory. We deduce that a normal subgroup of a G-completely reducible subgroup of G is again G-completely reducible, thereby providing an affirmative answer to a question posed by J.-P. Serre, and conversely we prove that the normalizer of a G-completely reducible subgroup of G is again G-completely reducible. Some rationality questions and applications to the spherical building of G are considered. Many of our results extend to the case of non-connected G.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.