Abstract

AbstractRelative geometric invariant theory studies the behavior of semistable points under equivariant morphisms. More precisely, suppose G is a reductive linear algebraic group over an algebraically closed field k, X and Y are quasi‐projective varieties endowed with G‐actions, is a G‐equivariant projective morphism, the G‐action on Y is linearized in the ample line bundle M, and the G‐action on X is linearized in the φ‐ample line bundle L. For any positive integer n, there is an induced linearization of the G‐action on X in the line bundle . If Y is projective and , the set of points in X that are semistable with respect to this linearization is contained in the preimage under φ of the set of points in Y that are semistable with respect to the given linearization in M. The same statement is trivially also true, if Y is affine and . In this note, we show by means of an example that the statement does not hold for arbitrary quasi‐projective varieties Y. This shows that a claim by Hu of the contrary is not true. Relative geometric invariant theory plays a role in the construction and study of degenerations of moduli spaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call