Abstract

<p style='text-indent:20px;'>We study second order linear differential equations with analytic coefficients. One important case is when the equation admits a so called regular singular point. In this case we address some untouched and some new aspects of Frobenius methods. For instance, we address the problem of finding formal solutions and studying their convergence. A characterization of regular singularities is given in terms of the space of solutions. An analytic-geometric classification of such linear polynomial homogeneous ODEs is obtained by the use of techniques from geometric theory of foliations means. This is done by associating to such an ODE a rational Riccati differential equation and therefore a <i>global holonomy group</i>. This group is a computable group of Moebius maps. These techniques apply to classical equations as Bessel and Legendre equations. We also address the problem of deciding which such polynomial equations admit a Liouvillian solution. A normal form for such a solution is then obtained. Our results are concrete and (computationally) constructive and are aimed to shed a new light in this important subject.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.