Abstract

The results of magnetotelluric and magnetovariational studies in the Uzon caldera are considered. An analysis of magnetotelluric parameters yielded the required method of interpretation. The MTS curves were interpreted in the framework of a 2D model using the REBOCC program. Geoelectric cross sections of the caldera were constructed along two orthogonal lines. Anomalies of high electrical conductivity were identified in the sediments and in the basement and were found to be confined to the locations of geothermal springs. The higher conductivity of these anomalies is here related to the presence of highly mineralized hydrothermal solutions. Electrical conductivity was used for an approximate estimation of porosity in the sediments and basement. A subvertical zone of higher porosity was identified at depths of 1.5–3.5 km in the caldera with a connection to the channelways of fluids rising into the sediments. It is hypothesized that highly mineralized solutions are diluted with vadose water in that zone and come through fissures onto the ground surface in the form of hot springs. The totality of these data suggested a conceptual model to characterize the main features in the generation of hydrothermal springs in the Uzon caldera.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.