Abstract

A metal transporter ZmNRAMP6 was identified by using a trait-associated co-expression network analysis at a genome-wide level. ZmNRAMP6 confers maize sensitivity to Pb by accumulating it to maize shoots. ZmNRAMP6 knockout detains Pb in roots, activates antioxidant enzymes, and improves Pb tolerance. Lead (Pb) is one of the most toxic heavy metal pollutants, which can penetrate plant cells via root absorption and thus cause irreversible damages to the human body through the food chain. To identify the key gene responsible for Pb tolerance in maize, we performed a trait-associated co-expression network analysis at a genome-wide level, using two maize lines with contrasting Pb tolerances. Finally, ZmNRAMP6 that encodes a metal transporter was identified as the key gene among the Pb tolerance-associated co-expression module. Heterologous expression of ZmNRAMP6 in yeast verified its role in Pb transport. Combined Arabidopsis overexpression and maize mutant analysis suggested that ZmNRAMP6 conferred plant sensitivity to Pb stress by mediating Pb distribution across the roots and shoots. Knockout of ZmNRAMP6 caused Pb retention in the roots and activation of the antioxidant enzyme system, resulting in an increased Pb tolerance in maize. ZmNRAMP6 was likely to transport Pb from the roots to shoots and environment. An integration of yeast one-hybrid and dual-luciferase reporter assay uncovered that ZmNRAMP6 was negatively regulated by a known Pb tolerance-related transcript factor ZmbZIP54. Collectively, knockout of ZmNRAMP6 will aid in the bioremediation of contaminated soil and food safety guarantee of forage and grain corn.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.