Abstract
We conducted a multi-stage genome-wide association study of natural hair color in more than 10,000 men and women of European ancestry from the United States and Australia. An initial analysis of 528,173 single nucleotide polymorphisms (SNPs) genotyped on 2,287 women identified IRF4 and SLC24A4 as loci highly associated with hair color, along with three other regions encompassing known pigmentation genes. We confirmed these associations in 7,028 individuals from three additional studies. Across these four studies, SLC24A4 rs12896399 and IRF4 rs12203592 showed strong associations with hair color, with p = 6.0×10−62 and p = 7.46×10−127, respectively. The IRF4 SNP was also associated with skin color (p = 6.2×10−14), eye color (p = 6.1×10−13), and skin tanning response to sunlight (p = 3.9×10−89). A multivariable analysis pooling data from the initial GWAS and an additional 1,440 individuals suggested that the association between rs12203592 and hair color was independent of rs1540771, a SNP between the IRF4 and EXOC2 genes previously found to be associated with hair color. After adjustment for rs12203592, the association between rs1540771 and hair color was not significant (p = 0.52). One variant in the MATP gene was associated with hair color. A variant in the HERC2 gene upstream of the OCA2 gene showed the strongest and independent association with hair color compared with other SNPs in this region, including three previously reported SNPs. The signals detected in a region around the MC1R gene were explained by MC1R red hair color alleles. Our results suggest that the IRF4 and SLC24A4 loci are associated with human hair color and skin pigmentation.
Highlights
There is substantial variation in human pigmentation within and across populations
It has been a longstanding hypothesis that human pigmentation is tightly regulated by genetic variation
Very few genes have been identified that contain common genetic variants associated with human pigmentation
Summary
Ultraviolet radiation (UV) exposure is the most important environmental factor influencing evolutionary selection pressure on pigmentation. In addition to UV-induced DNA damage, UVA can break down folic acid, and the major source of circulating vitamin D is synthesized in UVB-exposed skin. Because both nutrients are essential for human reproduction, it has been proposed that human pigmentation is selected, at least in part, to optimize levels of these two UV-related nutrients [1]. UV light is the major environmental risk factor for skin cancer in humans. Red and blonde hair color, light skin pigmentation, and blue eye color are major host susceptibility factors for skin cancer [2]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have