Abstract

Nitrogen-fixing symbioses allow legumes to thrive in nitrogen-poor soils at the cost of diverting some photoassimilate to their microsymbionts. Effort is being made to bioengineer nitrogen fixation into nonleguminous crops. This requires a quantitative understanding of its energetic costs and the links between metabolic variations and symbiotic efficiency. A whole-plant metabolic model for soybean (Glycine max) with its associated microsymbiont Bradyrhizobium diazoefficiens was developed and applied to predict the cost-benefit of nitrogen fixation with varying soil nitrogen availability. The model predicted a nitrogen-fixation cost of c. 4.13 g C g-1 N, which when implemented into a crop scale model, translated to a grain yield reduction of 27% compared with a non-nodulating plant receiving its nitrogen from the soil. Considering the lower nitrogen content of cereals, the yield cost to a hypothetical N-fixing cereal is predicted to be less than half that of soybean. Soybean growth was predicted to be c. 5% greater when the nodule nitrogen export products were amides versus ureides. This is the first metabolic reconstruction in a tropical crop species that simulates the entire plant and nodule metabolism. Going forward, this model will serve as a tool to investigate carbon use efficiency and key mechanisms within N-fixing symbiosis in a tropical species forming determinate nodules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.