Abstract

This paper presents a genetic algorithms (GA) simulation approach in solving a multi-attribute combinatorial dispatching (MACD) decision problem in a flow shop with multiple processors (FSMP) environment. The simulation is capable of modeling a non-linear and stochastic problem. GA are one of the commonly used metaheuristics and are a proven tool for solving complex optimization problems. The proposed GA simulation approach addresses a complex MACD problem. Its solution quality is illustrated by a case study from a multi-layer ceramic capacitor (MLCC) manufacturing plant. Because GA search results are often sensitive to the search parameters, this research optimized the GA parameters by using regression analysis. Empirical results showed that the GA simulation approach outperformed several commonly used dispatching rules. The improvements are ranging from 33% to 61%. On the other hand, the increased shop-floor-control complexity may hinder the implementation of the system. Finally, future research directions are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.