Abstract

Network models are widely used for solving difficult real-world problems. The minimum cost flow problem (MCFP) is one of the fundamental network optimisation problems with many practical applications. The difficulty of MCFP depends heavily on the shape of its cost function. A common approach to tackle MCFPs is to relax the non-convex, mixed-integer, nonlinear programme (MINLP) by introducing linearity or convexity to its cost function as an approximation to the original problem. However, this sort of simplification is often unable to sufficiently capture the characteristics of the original problem. How to handle MCFPs with non-convex and nonlinear cost functions is one of the most challenging issues. Considering that mathematical approaches (or solvers) are often sensitive to the shape of the cost function of non-convex MINLPs, this paper proposes a hybrid genetic algorithm with local search (namely GALS) for solving single-source single-sink nonlinear non-convex MCFPs. Our experimental results demonstrate that GALS offers highly competitive performances as compared to those of the mathematical solvers and a standard genetic algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.