Abstract
This chapter presents how Genetic Algorithm (GA) is effectively employed to Goal Programming (GP) formulation of an agricultural planning problem having interval model parameters and a set of chance constraints for optimal production of seasonal crops in uncertain environment. In model formulation, the planned-interval goals associated with objectives of the problem are converted into their equivalent two-objective deterministic goals. The chance constraints are also converted into their deterministic equivalents to solve the problem by using GP methodology. In goal achievement function, minimization of deviational variables associated with model goals is evaluated on the basis of priorities by employing a GA scheme to reach optimal decision. In the decision process, sensitivity analysis with variations of priority structure of goals is performed, and then the notion of Euclidean distance function is used to identify the priority structure under which optimal production of crops can be obtained in the decision environment. A case example is considered to demonstrate the approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.