Abstract
ABSTRACT Due to the large size of open-pit mines’ long-term production scheduling (OPMPS) problem in large-scale deposits, it is challenging to solve that problem as the mixed integer linear programming (MILP) model. This study used an approach of the genetic algorithm (GA) to tackle this challenge. So, in a small hypothetical deposit, based on the blocks in the ultimate pit limit and scenarios with 2–6 phases, net present values (NPV) and computational times obtained from the GA and MILP model were compared to evaluate the GA. Also, the GA was applied to a large-scale deposit to determine the efficiency of the GA in real deposits. The maximum NPV was obtained for the four-phase scenario in the hypothetical deposit and the six-phase scenario in the large-scale deposit. Although the GA’s NPV decreased slightly compared to the global optimum solution from the MILP model, the computational time was significantly reduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mining Technology: Transactions of the Institutions of Mining and Metallurgy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.