Abstract

This study evaluates a new solution approach for the Resource-Constrained Project Scheduling with Alternative Subgraphs (RCPSP-AS) in case that complex relations (i.e. nested and linked alternatives) are considered. In the RCPSP-AS, the project activity structure is extended with alternative activity sequences. This implies that only a subset of all activities should be scheduled, which corresponds with a set of activities in the project network that model an alternative execution mode for a work package. Since only the selected activities should be scheduled, the RCPSP-AS comes down to a traditional RCPSP problem when the selection subproblem is solved. It is known that the RCPSP and, hence, its extension to the RCPSP-AS is NP-hard. Since similar scheduling and selection subproblems have already been successfully solved by satisfiability (SAT) solvers in the existing literature, we aim to test the performance of a GA-SAT approach that is derived from the literature and adjusted to be able to deal with the problem-specific constraints of the RCPSP-AS. Computational results on small- and large-scale instances (both artificial and empirical) show that the algorithm can compete with existing metaheuristic algorithms from the literature. Also, the performance is compared with an exact mathematical solver and learning behaviour is observed and analysed. This research again validates the broad applicability of SAT solvers as well as the need to search for better and more suited algorithms for the RCPSP-AS and its extensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call