Abstract
To date, numerous Earth observation datasets from different types of satellites have been widely used in photogrammetric fields, including urban 3D modelling and geographic information systems. The development of small satellites has provided a new way to obtain repeated observations in a short period. However, compared with that of standard satellite imagery, the geometric performance of imagery from small satellites is relatively poor, restricting their photogrammetric applications. Traditional methods can improve the accuracy of optical images with the addition of well-distributed ground control points (GCPs), which require considerable financial and human resources. The collection of multi-view datasets is an alternative method for geometric processing without GCPs, but relies heavily on the stability and revisit period of satellite platforms. Therefore, this paper presents a framework for improving the geopositioning accuracy of multi-source datasets obtained from optical and synthetic aperture radar (SAR) satellites, and a novel heterogeneous weight strategy is proposed based on an analysis of the geometric error sources of SAR and optical images. The geometric performance of multi-source optical imagery from the Jilin-1 (JL-1) small satellite constellation is evaluated and analysed first, and then Gaofen-3 (GF-3) SAR images are calibrated based on statistical analysis for the production of virtual control points (VCPs). Based on our proposed heterogeneous weight strategy, multi-source optical and SAR images are integrated to improve the geopositioning accuracy. Experimental results indicate that our proposed model can achieve the best performance compared with other popular models, producing an accuracy of approximately 3 m in planimetry and 2 m in height, thereby providing a generic way to synergistically use multi-source remote sensing data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Journal of Photogrammetry and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.