Abstract

The present study tries to decrease the risk of work-related musculoskeletal disorders for industry workers by proposing a generic algorithm that recommends an optimal ergonomic posture for accomplishing tasks in an industrial environment. In the case of a dangerous ergonomic pose, the optimization algorithm starts by heuristically changing it to a more ergonomic one. Each recommended posture's feasibility is tested with an inverse kinematic method that can predict the worker's behavior for accomplishing a task. This iterative optimization procedure continues until the optimal ergonomic pose for the worker is achieved. The algorithm's validity is tested in thirteen cases, people with different gender (50 percent male, 50 percent female) aged between 20 and 35, and different height and body morphologies. According to studies, there is a connection between musculoskeletal disorders and the wrong posture for accomplishing tasks in industries. We suggest an optimization algorithm that can indicate the worker the optimal ergonomic pose by considering task constraints in real-time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.