Abstract
BackgroundThe accurate identification of molecular subtypes in digestive tract cancer (DTC) is crucial for making informed treatment decisions and selecting potential biomarkers. With the rapid advancement of artificial intelligence, various machine learning algorithms have been successfully applied in this field. However, the complexity and high dimensionality of the data features may lead to overlapping and ambiguous subtypes during clustering.ResultsIn this study, we propose GDEC, a multi-task generative deep neural network designed for precise digestive tract cancer subtyping. The network optimization process involves employing an integrated loss function consisting of two modules: the generative-adversarial module facilitates spatial data distribution understanding for extracting high-quality information, while the clustering module aids in identifying disease subtypes. The experiments conducted on digestive tract cancer datasets demonstrate that GDEC exhibits exceptional performance compared to other advanced methodologies and can separate different cancer molecular subtypes that possess both statistical and biological significance. Subsequently, 21 hub genes related to pan-DTC heterogeneity and prognosis were identified based on the subtypes clustered by GDEC. The following drug analysis suggested Dasatinib and YM155 as potential therapeutic agents for improving the prognosis of patients in pan-DTC immunotherapy, thereby contributing to the enhancement of cancer patient survival.ConclusionsThe experiment indicate that GDEC outperforms better than other deep-learning-based methods, and the interpretable algorithm can select biologically significant genes and potential drugs for DTC treatment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have