Abstract
In this paper, a set-valued generalized upper Dini-directional derivative is introduced for a locally lipschitz vector-valued function. Some properties, such as sum formula and chain rule, of this upper Dini-directional derivative are derived. This upper Dini-directional derivative is applied to characterize a cone-convex function and a vector subdifferential and to derive optimality conditions for a multi-objective optimization problem with a locally Lipschitz vector-valued objective function over a convex set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.