Abstract
In this article, based on the grad-div stabilization, we propose a generalized scalar auxiliary variable approach for solving a fluid–fluid interaction problem governed by the Navier–Stokes-ω/Navier–Stokes-ω equations. We adopt the backward Euler scheme and mixed finite element approximation for temporal-spatial discretization, and explicit treatment for the interface terms and nonlinear terms. The proposed scheme is almost unconditionally stable and requires solving only the linear equation with constant coefficient at each time step. It can also penalize for lack of mass conservation and improve the accuracy. Finally, a series of numerical experiments are carried out to illustrate the stability and effectiveness of the proposed scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.