Abstract
ABSTRACT The classical Mountain Pass Lemma of Ambrosetti-Rabinowitz has been studied, extended and modified in several directions. Notable examples would certainly include the generalization to locally Lipschitz functionals by K. C. Chang, analyzing the structure of the critical set in the mountain pass theorem in the works of Hofer, Pucci-Serrin and Tian, and the extension by Ghoussoub-Preiss to closed subsets in a Banach space with recent variations. In this paper, we utilize the generalized gradient of Clarke and Ekeland's variatonal principle to generalize the Ghoussoub-Preiss's Theorem in the setting of locally Lipschitz functionals. We give an application to periodic solutions of Hamiltonian systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.