Abstract

We propose a generalized inexact Newton method for solving the inverse eigenvalue problems, which includes the generalized Newton method as a special case. Under the nonsingularity assumption of the Jacobian matrices at the solutionc*, a convergence analysis covering both the distinct and multiple eigenvalue cases is provided and the quadratic convergence property is proved. Moreover, numerical tests are given in the last section and comparisons with the generalized Newton method are made.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.