Abstract

A kind of generalized inverse eigenvalue problem is proposed which includes the additive, multiplicative and classical inverse eigenvalue problems as special cases. Newton's method is applied, and a local convergence analysis is given for both the distinct and the multiple eigenvalue cases. When the multiple eigenvalues are present we show how to state the problem so that it is not over-determined, and discuss a Newton-method for the modified problem. We also prove that the modified method retains quadratic convergence, and present some numerical experiments to illustrate our results. © 1997 by John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.