Abstract
The classical Kalman filter (KF) can estimate the structural state online in real time. However, the classical KF presupposes that external excitations are known. The existing methods of Kalman filter with unknown inputs (KF-UI) have limitations that require observing the acceleration response at the excitation point or assuming the unknown force. To surmount the above defects, an innovative modal Kalman filter with unknown inputs (MKF-UI) is proposed in this paper. Modal transformation and modal truncation are used to reduce the dimensionality of the structural state, and the accelerations at the excitation positions do not need to observe. Besides, the proposed MKF-UI does not require the assumption of unknown external excitation. Therefore, the proposed approach is suitable for the generalized identification of dynamic structural states and unknown loadings. The effectiveness and feasibility of the proposed identification approach are ascertained by some numerical simulation examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.