Abstract
We present model for anisotropic compact star under the general theory of relativity of Einstein. In the study a 4-dimensional spacetime has been considered which is embedded into the 5-dimensional flat metric so that the spherically symmetric metric has class 1. A set of solutions for the field equations are found depending on the index n involved in the physical parameters. The interior solutions have been matched smoothly at the boundary of the spherical distribution to the exterior Schwarzschild solution which necessarily provides values of the unknown constants. We have chosen the values of n as n=2 and n=10 to 20000 for which interesting and physically viable results can be found out. The investigations on the physical features of the model include several astrophysical issues, like (i) regularity behaviour of stars at the centre, (ii) well behaved condition for velocity of sound, (iii) energy conditions, (iv) stability of the system via the following three techniques — adiabatic index, Herrera cracking concept and TOV equation, (v) total mass, effective mass and compactification factor and (vi) surface redshift. Specific numerical values of the compact star candidates LMC X-4 and SMC X-1 are calculated for central and surface densities as well as central pressure to compare the model value with actual observational data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.