Abstract

Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed, imaging resolution, and imaging flux. This paper proposes a deep neural network based on a generative adversarial network (GAN). The generator employs a U-Net-based network, which integrates DenseNet for the downsampling component. The proposed method has excellent properties, for example, the network model is trained with several different datasets of biological structures; the trained model can improve the imaging resolution of different microscopy imaging modalities such as confocal imaging and wide-field imaging; and the model demonstrates a generalized ability to improve the resolution of different biological structures even out of the datasets. In addition, experimental results showed that the method improved the resolution of caveolin-coated pits (CCPs) structures from 264[Formula: see text]nm to 138[Formula: see text]nm, a 1.91-fold increase, and nearly doubled the resolution of DNA molecules imaged while being transported through microfluidic channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call