Abstract
A computationally efficient gradient-based optimization approach for inverse material characterization from incomplete system response measurements that can utilize a generally applicable parameterization (e.g., finite element-type parameterization) is presented and evaluated. The key to this inverse characterization algorithm is the use of a direct inversion strategy with Gappy proper orthogonal decomposition (POD) response field estimation to initialize the inverse solution estimate prior to gradient-based optimization. Gappy POD is used to estimate the complete (i.e., all components over the entire spatial domain) system response field from incomplete (e.g., partial spatial distribution) measurements obtained from some type of system testing along with some amount of a priori information regarding the potential distribution of the unknown material property. The estimated complete system response is used within a physics-based direct inversion procedure with a finite element-type parameterization to estimate the spatial distribution of the desired unknown material property with minimal computational expense. Then, this estimated spatial distribution of the unknown material property is used to initialize a gradient-based optimization approach, which uses the adjoint method for computationally efficient gradient calculations, to produce the final estimate of the material property distribution. The three-step [(1) Gappy POD, (2) direct inversion, and (3) gradient-based optimization] inverse characterization approach is evaluated through simulated test problems based on the characterization of elastic modulus distributions with localized variations (e.g., inclusions) within simple structures. Overall, this inverse characterization approach is shown to efficiently and consistently provide accurate inverse characterization estimates for material property distributions from incomplete response field measurements. Moreover, the solution procedure is shown to be capable of extrapolating significantly beyond the initial assumptions regarding the potential nature of the unknown material property distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.