Abstract

In this paper, the boundary stabilization problem of a class of unstable reaction–advection–diffusion (RAD) systems described by a scalar parabolic partial differential equation (PDE) is considered. Different the previous research, we present a new gradient-based optimization framework for designing the optimal feedback kernel for stabilizing the unstable PDE system. Our new method does not require solving non-standard Riccati-type or Klein–Gorden-type PDEs. Instead, the feedback kernel is parameterized as a second-order polynomial whose coefficients are decision variables to be tuned via gradient-based dynamic optimization, where the gradients of the system cost functional (which penalizes both kernel and output magnitude) with respect to the decision parameters are computed by solving a so-called “costate” PDE in standard form. Special constraints are imposed on the kernel coefficients to ensure that the optimized kernel yields closed-loop stability. Finally, three numerical examples are illustrated to verify the effectiveness of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call