Abstract

In this paper we express the linearized dynamics of interacting interfacial waves in stratified shear flows in the compact form of action-angle Hamilton’s equations. The pseudo-energy serves as the Hamiltonian of the system, the action coordinates are the contribution of the interfacial waves to the wave action and the angles are the phases of the interfacial waves. The term ‘generalized action angle’ aims to emphasize that the action of each wave is generally time dependent and this allows for instability. An attempt is made to relate this formalism to the action at a distance resonance instability mechanism between counter-propagating vorticity waves via the global conservations of pseudo-energy and pseudo-momentum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.