Abstract
We introduce a Stancu type generalization of the Lupaș \(q\)-analogue of the Bernstein operator via the parameter \(\alpha\). The construction of our operator is based on the generalization of Gauss identity involving \(q\)-integers. We establish the convergence of our sequence of operators in the strong operator topology to the identity, estimating the rate of convergence by using the second order modulus of smoothness. For \(\alpha\) and \(q\) fixed, we study the limit operator of our sequence of operators taking into account the relationship between two consecutive terms of the constructed sequence of operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Numerical Analysis and Approximation Theory
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.