Abstract
For large sparse saddle point problems, Jiang and Cao studied a class of local Hermitian and skew-Hermitian splitting (LHSS) iteration methods (see M.-Q. Jiang, Y. Cao, On local Hermitian and skew-Hermitian splitting iteration methods for generalized saddle point problems, J. Comput. Appl. Math. 231 (2009) 973–982). In this paper, we generalized these methods and propose a class of generalized local Hermitian and skew-Hermitian splitting (GLHSS) iteration schemes for solving the non-Hermitian saddle point problems. We derive conditions for guaranteeing the convergence of these iterative methods. With different choices of the parameter matrices, the generalized iterative methods lead to a series of existing and new iterative methods. Numerical experiments for a model Stokes problem are provided, further show that the new iteration methods are feasible and effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.