Abstract

For large sparse saddle point problems, we establish a new version of the preconditioned Hermitian and skew-Hermitian splitting (PHSS) iteration method, called the modified PHSS (MPHSS) method in this paper. Then, we theoretically study its convergence and semi-convergence properties and determine its optimal iteration parameter and corresponding optimal convergence factor. Furthermore, the spectral properties of the MPHSS preconditioned matrix are discussed in detail. Numerical experiments show that the MPHSS iteration method is effective and robust when it is used either as a solver or as a matrix splitting preconditioner for the generalized minimal residual (GMRES) method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.