Abstract

Accurate forecasting of residential energy loads is highly influenced by the use of electrical appliances, which not only affect electrical energy use but also internal heat gains, which in turn affects thermal energy use. It is therefore important to accurately understand the characteristics of appliance use and to embed this understanding into predictive models to support load forecast and building design decisions. Bottom-up techniques that account for the variability in socio-demographic characteristics of the occupants and their behaviour patterns constitute a powerful tool to this end, and are potentially able to inform the design of Demand Side Management strategies in homes.To this end, this paper presents a comparison of alternative strategies to stochastically model the temporal energy use of low-load appliances (meaning those whose annual energy share is individually small but significant when considered as a group). In particular, discrete-time Markov processes and survival analysis have been explored. Rigorous mathematical procedures, including cluster analysis, have been employed to identify a parsimonious strategy for the modelling of variations in energy demand over time of the four principle categories of small appliances: audio-visual, computing, kitchen and other small appliances. From this it is concluded that a model of the duration for which appliances survive in discrete states expressed as bins in fraction of maximum power demand performs best. This general solution may be integrated with relative ease with dynamic simulation programs, to complement existing models of relatively large load appliances for the comprehensive simulation of household appliance use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.