Abstract
This article describes a refutation method of proving maximality of three-valued paraconsistent logics. After outlining the philosophical background related to paraconsistent logics and the refutation approach to modern logic, we briefly describe how these two areas meet in the case of maximal paraconsistent logics. We focus on a method of proving maximality introduced in [34] and [37] that has the benefit of being simple and effective. We show how the method works on a number of examples, thus emphasising the fact that it provides a unifying approach to the search for maximal paraconsistent logics. Finally, we show how the method can be generalised to cover a wide range of paraconsistent logics. We also conduct a small experimental setting that confirms the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.