Abstract
ABSTRACTThe articles Maximality and Refutability Skura [(2004). Maximality and refutability. Notre Dame Journal of Formal Logic, 45, 65–72] and Three-valued Maximal Paraconsistent Logics Skura and Tuziak [(2005). Three-valued maximal paraconsistent logics. In Logika (Vol. 23). Wydawnictwo Uniwersytetu Wrocławskiego] introduced a simple method of proving maximality (in the two distinguished senses) of a given paraconsistent matrix. This method stemmed from the so-called refutation calculus, where the focus in on rejecting rather than accepting formulas. The article A Generalisation of a Refutation-related Method in Paraconsistent Logics Trybus [(2018). A generalisation of a refutation-related method in paraconsistent logics. Logic and Logical Philosophy, 27(2). doi:10.12775/LLP.2018.002] was a first step towards generalising the method. In it, a number of 3-valued paraconsistent matrices were shown maximal. In this article we extend these results to cover a number of n-valued (n>2) paraconsistent matrices using the same method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.