Abstract
We derive a general state sum construction for 2D topological quantum field theories (TQFTs) with source defects on oriented curves, extending the state-sum construction from special symmetric Frobenius algebra for 2D TQFTs without defects (cf. Lauda and Pfeiffer [State-sum construction of two-dimensional open-closed topological quantum field theories, J. Knot Theory Ramifications 16 (2007) 1121–1163, doi: 10.1142/S0218216507005725]). From the extended Pachner moves (Crane and Yetter [Moves on filtered PL manifolds and stratified PL spaces, arXiv:1404.3142 ]), we derive equations that we subsequently translate into string diagrams so that we can easily observe their properties. As in Dougherty, Park and Yetter [On 2-dimensional Dijkgraaf–Witten theory with defects, to appear in J. Knots Theory Ramifications], we require that triangulations be flaglike, meaning that each simplex of the triangulation is either disjoint from the defect curve, or intersects it in a closed face, and that the extended Pachner moves preserve flaglikeness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.