Abstract
This paper presents a general real-time, numerically stable optimization framework for time polynomial-based trajectory generation of autonomous aerial robots. The proposed general optimization framework (GOF) allows various optimization criteria for trajectory generation cost-function, such as minimizing the trajectory total length, time, and position derivatives. Minimizing position derivatives includes velocity, acceleration, jerk, and snap, or any combination of them. This study considers the quadrotor as the test platform. By exploiting tools from the calculus of variations, differential flatness property, and polynomial-based trajectories, the developed algorithm finds feasible trajectories without extensive computational sampling and iterative searching in the high-dimensional state space of quadrotor dynamics. The GOF includes a segment-wise gradient descent-like algorithm to iteratively decrease the allowed time of each segment individually so as to avoid getting stuck at a local minimum. The comparison analysis with existing methods validated the numerical stability and computational speed advantages of the proposed approach. It also shows that the algorithm is suitable for the real-time generation of high-performance long-range trajectories consisting of a large number of waypoints and high-order piecewise polynomials. An animated simulation of this work is available at https://youtu.be/E1AC1vyPqOE
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.