Abstract
Recently direct optimization of information retrieval (IR) measures has become a new trend in learning to rank. In this paper, we propose a general framework for direct optimization of IR measures, which enjoys several theoretical advantages. The general framework, which can be used to optimize most IR measures, addresses the task by approximating the IR measures and optimizing the approximated surrogate functions. Theoretical analysis shows that a high approximation accuracy can be achieved by the framework. We take average precision (AP) and normalized discounted cumulated gains (NDCG) as examples to demonstrate how to realize the proposed framework. Experiments on benchmark datasets show that the algorithms deduced from our framework are very effective when compared to existing methods. The empirical results also agree well with the theoretical results obtained in the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.