Abstract
The 6-axis external fixation mechanism with Gough-Stewart configuration has been widely applied to the correction of long bone deformities in orthopedics. Pose recognition of the mechanism is essential for trajectory planning of bone correction, but is usually implemented by the surgeons’ experience, resulting in a relatively low level of correction accuracy. This paper proposes a pose recognition method based on novel image markers, and implements accuracy analysis. Firstly, a pose description of the mechanism is established with several freely installed markers, and the layout of the markers is also parametrically described. Then, a pose recognition method is presented by identifying the orientation and position parameters using the markers. The recognition method is general in that it encompasses all possible marker layouts, and the recognition accuracy is investigated by analyzing variations in the marker layout. On this basis, layout principles for markers that achieve a desired recognition accuracy are established, and an error compensation strategy for precision improvement is provided. Finally, experiments were conducted. The results show that volume errors of pose recognition were 0.368 ± 0.130 mm and 0.151 ± 0.045°, and the correction accuracy of the fracture model after taking compensation was 0.214 ± 0.573 mm and −0.031 ± 0.161°, validating the feasibility and accuracy of the proposed methods.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have