Abstract
An electroencephalographic-based brain–computer interface (BCI) can provide a non-muscular method of communication. A general model for P300-based BCI stimulus presentations is introduced – the “m choose n” or C(m (number of flashes per sequence), n (number of flashes per item)) paradigm, which is a universal extension of the previously reported checkerboard paradigm (CBP). C(m,n) captures all possible (unconstrained) ways to flash target items, and then applies constraints to enhance ERP's produced by attended matrix items. We explore a C(36,5) instance of C(m,n) called the “five flash paradigm” (FFP) and compare its performance to the CBP. Eight subjects were tested in each paradigm, counter-balanced. Twelve minutes of calibration data were used as input to a stepwise linear discriminant analysis to derive classification coefficients used for online classification. Accuracy was consistently high for FFP (88%) and CBP (90%); information transfer rate was significantly higher for the FFP (63bpm) than the CBP (48bpm). The C(m,n) is a novel and effective general strategy for organizing stimulus groups. Appropriate choices for “m,” “n,” and specific constraints can improve presentation paradigms by adjusting the parameters in a subject specific manner. This may be especially important for people with neuromuscular disabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.