Abstract

An efficient and general method for the computation of analytic energy gradients and energy response properties for general MRCI (multireference configuration interaction) and ACPF (averaged coupled pair functional) wave functions is presented. This methodology includes a general approach, based on successive orbital transformations, for the inclusion of the effects of various orbital resolution (canonicalization) constraints. Initial implementation in the columbus Program System demonstrates, particularly for large-scale multireference wave functions, that the additional computational effort required for the energy gradient is a small fraction of that required for the energy. For polyatomic molecules, the computational resources required for the energy gradient do not depend explicitly on the number of constituent atoms. This combination of features represents a major step forward in the computation and characterization of molecular potential energy surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.