Abstract

We propose a feasible and constructive methodology which allows us to compute pure hedging strategies with respect to arbitrary square-integrable claims in incomplete markets. In contrast to previous works based on PDE and BSDE methods, the main merit of our approach is the flexibility of quadratic hedging in full generality without a priori smoothness assumptions on the payoff. In particular, the methodology can be applied to multidimensional quadratic hedging-type strategies for fully path-dependent options with stochastic volatility and discontinuous payoffs. In order to demonstrate that our methodology is indeed applicable, we provide a Monte Carlo study on generalized Föllmer-Schweizer decompositions, locally risk minimizing, and mean variance hedging strategies for vanilla and path-dependent options written on local volatility and stochastic volatility models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.