Abstract

Common carrier pipelines are one of the most economic modes for transportation of petroleum refined products over land, especially when huge amounts of these products have to be pumped toward long-distance terminals. This paper introduces a novel Mixed Integer Linear Programming (MILP)-based approach for the long-term scheduling of a real world multiproduct pipeline connecting a unique refinery to several distribution centers. This approach allows consideration of multiple due dates for demands at period ends, flow rate limitation on pipeline segments, and simultaneous deliveries at distribution centers. The proposed model results in substantial reduction in pump operation and maintenance costs in comparison with the available models. Computational results and data are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.