Abstract

Detailed scheduling of long-distance multiproduct pipelines has received growing attention in the past few years. It helps the planner to reduce the number of pump and segment switches between active and idle conditions to obtain savings on pump operating and maintenance costs. Most contributions on the detailed scheduling of multiproduct pipelines concern networks with a single straight line. Large-scale pipeline networks, however, usually have a treelike configuration, featuring a mainline and several secondary lines, transporting smaller volumes of refined petroleum products over shorter distances. This work addresses the scheduling of a multiproduct treelike pipeline through a continuous-time mixed integer linear programming (MILP) model that allows the execution of simultaneous deliveries from a unique refinery to multiple downstream terminals so as to get a substantial increase in transportation capacity. Contrary to previous contributions on treelike pipeline systems, the new model solves batch siz...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.