Abstract

A mathematical treatment has been developed to predict the release of volatile fission products from operating defective nuclear fuel elements. The fission product activity in both the fuel-to-sheath gap and primary heat transport system as a function of time can be predicted during all reactor operating conditions, including: startup, steady-state, shutdown, and bundle-shifting manoeuvres. In addition, an improved ability to predict the coolant activity of the 135Xe isotope in commercial reactors is discussed. A method is also proposed to estimate both the burnup and the amount of tramp uranium deposits in-core. The model has been validated against in-reactor experiments conducted with defective fuel elements containing natural and artificial failures at the Chalk River Laboratories. Lastly, the model has been benchmarked against a defective fuel occurrence in a commercial reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.