Abstract

Predicting the effects of organic compounds on environments and biological systems is an important objective for environmental chemistry and human health. The logarithm (to base 10) of the n-octanoll–water partition coefficient has been widely used to predict the mentioned properties. However, the suitability of this parameter for the purpose has been questioned, since the environments relating to the properties may be quite different from that of bulk n-octanol. In this study, we used a theoretical derivation approach to develop a model for predicting the partition coefficients of solutes between water and an organic solvent that may be similar to n-octanol or quite different from it. Our model relies on solute descriptors that can be calculated based on solute structures. It was used to predict the n-octanoll–water, hexadecanel–water and chloroforml–water partition coefficients of solutes. The calculated values of the examined parameters agreed well with their experimental counterparts. The model can find application in the accurate prediction of the effects of organic compounds on environments and the physicochemical properties of organic compounds by a full in-silico approach and can provide useful guidance for improving some properties of organic compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.