Abstract

This work presents a general framework of finite-difference hybrid scheme which contains a linear central scheme and a nonl-inear WENO scheme. A new optimal-designed shock sensor is used to distinguish the smoothness of flowfield and a binary-type weighting function is used to switch sub-schemes rationally. Based on the above improvements, the effects of different combinations of each component within the hybrid scheme are characterized in linear advection equation and Euler equations. The maximum reference threshold values are provided. Extensive test cases indicate the hybrid scheme’s numerical robustness, low-dissipation, and superior computational efficiency. Specifically, benefited from the high-resolution shock sensor which can accurately perceive shocks without excessive misidentifications, the hybrid scheme can achieve non-oscillatory solutions, and resolve more vortices in smooth regions compared to the original shock-capturing scheme. Meanwhile, the superiority of the hybrid scheme is further confirmed in the Reynolds-averaged Navier–Stokes equations/Lager Eddy Simulations (RANS/LES) for the DLR scramjet combustor case with viscous terms and/or sub-grid scale models are used. The present hybrid framework can be easily implemented within the existing numerical simulation code framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.