Abstract
In this paper, we propose a general approximation framework for the valuation of (path-dependent) options under time-changed Markov processes. The underlying background process is assumed to be a general Markov process, and we consider the case when the stochastic time change is constructed from either discrete or continuous additive functionals of another independent Markov process. We first approximate the underlying Markov process by a continuous time Markov chain (CTMC) and derive the functional equation characterizing the double transforms of the transition matrix of the resulting time-changed CTMC. Then we develop a two-layer approximation scheme by further approximating the driving process in constructing the time change using an independent CTMC. We obtain a single Laplace transform expression. Our framework incorporates existing time-changed Markov models in the literature as special cases, such as the time-changed diffusion process and the time-changed Levy process. Numerical experiments illustrate the accuracy of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.