Abstract

After the recent financial crisis, the market for volatility derivatives has expanded rapidly to meet the demand from investors, risk managers and speculators seeking diversification of the volatility risk. In this paper, we develop a novel and efficient transform-based method to price swaps and options related to discretely-sampled realized variance under a general class of stochastic volatility models with jumps. We utilize frame duality and density projection method combined with a novel continuous-time Markov chain (CTMC) weak approximation scheme of the underlying variance process. Contracts considered include discrete variance swaps, discrete variance options, and discrete volatility options. Models considered include several popular stochastic volatility models with a general jump size distribution: Heston, Scott, Hull–White, Stein–Stein, α-Hypergeometric, 3/2 and 4/2 models. Our framework encompasses and extends the current literature on discretely sampled volatility derivatives, and provides highly efficient and accurate valuation methods. Numerical experiments confirm our findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.