Abstract
In this work we introduce a new and systematic methodology for precise tracking control of normal-form nonlinear systems subject to non-vanishing/non-parametric uncertainties. We propose a general solution to achieving robust tracking with a rate of convergence that can be pre-assigned as fast as desired (e.g. super exponential or even closer to a pre-specified finite time). The key design tool is the utilization of a time-varying feedback gain through a time-varying scaling function that satisfies certain conditions. Our method also features with complete rejection (rather than partial attenuation) of uncertainties/disturbances and regulation of the tracking error to zero. A generic and analytical procedure to construct the time-varying rate function is provided, extending and generalizing the existing results in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.